Skip to main content
Log in

Geochemical features of heavy metal bioaccumulation in the Guaymas Basin of the Gulf of California

  • Marine Geology
  • Published:
Oceanology Aims and scope

Abstract

Atomic absorption spectroscopy (flame and graphite furnace techniques) and instrumental neutron activation analysis were used for determining the Fe, Mn, Zn, Cu, Pb, Cd, Ag, Co, Cr, As, Se, Sb, Ba, Au, and Hg contents in 25 samples of different tissues and whole organisms inhabiting the southern trough in the Guaymas Basin (Gulf of California) and in several samples of its bottom waters. It is shown that the habitat environment of this hydrothermal field with high primary production of both photosynthetic and bacterial chemosynthetic origin influences the Fe and Mn ratios in the waters of the microbiotopes and the distribution patterns of the metals in the external and internal organs of the benthic animals. In the dominant specialized taxa, the maximal bioaccumulation of metals is registered both in the organs related to bacterial chemosynthesis such as the trophosome of Vestimentifera Riftia pachyptila and the gills of the vesicomyid clam Archivestica gigas and in other organs. The other organisms such as the mollusks Nuculana grasslei, actinias Paraphelliactis pabista, Actinaria, and Spongia and the crabs Munidopsis alvisca demonstrate high bioaccumulation properties as well. The metal concentration coefficient is highly variable ranging from 10 to 104. The changes in the molar Fe/Mn ratio values imply the partitioning of these two metals in the following migration succession: microbiotope water-external organs-internal organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Bogdanov, A. P. Lisitsyn, A. M. Sagalevich, and E. G. Gurvich, Hydrothermal Ore Formation of the Floor of the Ocean (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  2. V. F. Gal’chenko, A. Yu. Lein, Yu. M. Miller, et al., “Role of Symbiotic Bacteria in the Feeding of Invertebrates in the Regions of Active Underwater Hydrotherms,” in Geological Structure and Hydrothermal Formations of the Juan De Fuca Range, Ed. by A. P. Lisitsyn (Nauka, Moscow, 1989), pp. 177–182 [in Russian].

    Google Scholar 

  3. S. V. Galkin, Hydrothermal Communities of the World Ocean (GEOS, Moscow, 2002) [in Russian].

    Google Scholar 

  4. L. L. Demina, S. V. Galkin, A. Yu. Lein, et al., “First Data about the Composition of Microelements in the Benthic Organisms from the 9°50′N Hydrothermal Field (East Pacific Rise)” Dokl. Akad. Nauk 415(4), 528–531 (2007).

    Google Scholar 

  5. A. Yu. Lein, V. F. Gal’chenko, V. A. Grinenko, et al., “Mineral Composition and Geochemistry of Rocks with Bacterial Fouling from Underwater Hydrothermal Formations in the Ocean,” Geokhimiya, No. 9, 1235–1248 (1988).

  6. A. Yu. Lein, E. M. Sedykh, N. P. Starshinova, et al., “Metal Distribution in Bacteria and Animals of Underwater Hydrothermal Fields,” Geokhimiya, No. 2, 297–303 (1989).

  7. V. N. Lukashin, S. V. Galkin, and A. Yu. Lein, “Features of the Chemical Composition of the Animals of a Deep-Water Hydrotherm,” Geokhimiya, No. 2, 279–285 (1990).

  8. V. N. Lukashin, “Report of the Geological Team Manager,” Report on Cruise 49-M of R/V Akademik Mstislav Keldysh (2003), Vol. 3, 184–186.

    Google Scholar 

  9. J. A. Allen, “A New Deep-Water Hydrothermal Species of Nuculana (Bivalvia: Protobranchia) from the Guaymas Basin,” Malacologia 35(1), 141–151 (1993).

    Google Scholar 

  10. S. E. Calvert, “Accumulation of Diatomaceous Silica in the Silica in the Sediments in the Sediments of the Gulf of California,” Geol. Soc. Am. Bull. 77, 569–596 (1966).

    Article  Google Scholar 

  11. A. C. Campbell, J. M. Gieskes, J. I. Lupton, et al., “Manganese Geochemistry in the Guaymas Basin, Gulf of California,” Geochim. Cosmochimic. Acta 52(2), 345–357 (1988).

    Article  Google Scholar 

  12. J. J. Childress, A. J. Arp, and C. R. Fisher, “Metabolic and Respiratory Characteristics of the Hydrothermal Vent Tube Worm Riftia pachyptila,” Mar. Biol. (Berlin) 83, 109–124 (1984).

    Article  Google Scholar 

  13. G. De la Lanza-Espino and L. A. Soto, “Sedimentary Geochemistry of Hydrothermal Vents in Guaymas Basin, Gulf of California, Mexico,” Appl. Geochem. 14, 499–510 (1999).

    Article  Google Scholar 

  14. E. Douville, J. L. Charlou, E. H. Oelkers, et al., “The Rainbow Vent Fluids (36°14′N, MAR): The Influence of Ultramaphic Rocks and Phase Separation on Trace Metals Content in Mid-Atlantic Ridge Hydrothermal Fluids,” Chem. Geol. 184(1), 37–48 (2002).

    Article  Google Scholar 

  15. J. Dymond, J. B. Corliss, G. R. Heath, et al., “Origin of Metalliferous Sediments from the Pacific Ocean,” Geol. Soc. Am. Bull. 84(10), 3355–3372 (1973).

    Article  Google Scholar 

  16. E. Kadar, V. Costa, and M. Segonzac, “Trophic Influences of Metal Accumulation in Natural Pollution Laboratories at Deep-Sea Hydrothermal Vents of the Mid-Atlantic Ridge,” Sci. Total Environ. 373, 464–472 (2007).

    Article  Google Scholar 

  17. K. D. Klitgord, J. D. Mudie, J. L. Bischoff, et al., “Magnetic Anomalies in the Northern and Central Gulf of California,” Geology 85, 815–820 (1974).

    Google Scholar 

  18. Y.-H. Li, “Distribution Patterns of the Elements in the Ocean,” Geochim. Cosmochimic. Acta 55, 3223–3240 (1991).

    Article  Google Scholar 

  19. P. Lonsdale, J. L. Bischoff, V. M. Burns, et al., “A High-Temperature Hydrothermal Deposit on the Sea Bed at Gulf of California Spreading Center,” Earth Planet. Sci. Lett. 49, 8–20 (1980).

    Article  Google Scholar 

  20. G. Roesijadi and E. A. Crecelius, “Elemental Composition of the Hydrothermal Vent Clam Calyptogena magnifica from the East Pacific Rise,” Mar. Biol. 83(2), 155–161 (1984).

    Article  Google Scholar 

  21. J. Ruelas-Inzunza, L. A. Soto, and F. Paez-Osuna, “Heavy Metal Accumulation in the Hydrothermal Vent Clam Vesicomya gigas from Guaymas Basin, Gulf of California,” Deep-Sea Res. I 50, 757–761 (2003).

    Article  Google Scholar 

  22. J. Ruelas-Inzunza, F. Páez-Osuna, and L. A. Soto, “Bioaccumulation of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn in Trophosome and Vestimentum of the Tube Worm Riftia pachyptila from Guaymas Basin, Gulf of California,” Deep-Sea Res. I 52, 1319–1323 (2005).

    Article  Google Scholar 

  23. S. B. Tambiev and L. L. Demina, “Biogeochemistry and Fluxes of Manganese and Some Other Metals in the Regions of Hydrothermal Activity (Axial Mountain, Juan De Fuca Ridge and Guaymas Basin, Gulf of California),” Deep-Sea Res. 39(3/4), 687–703 (1992).

    Article  Google Scholar 

  24. K. L. Von Damm, J. M. Edmond, C. J. Measures, et al., “Chemistry of Submarine Hydrothermal Solutions at Guaymas Basin, Gulf of California,” Geochim. Cosmochim. Acta 49(11), 2221–2237 (1985).

    Article  Google Scholar 

  25. K. L. Von Damm, “Chemistry of Hydrothermal Vent Fluids from 9–10°N, East Pacific Rise: “Time Zero”, the Immediate Posteruptive Period,” J. Geophys. Res. 5, 11203–11222 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Demina.

Additional information

Original Russian Text © L.L. Demina, S.V. Galkin, 2009, published in Okeanologiya, 2009, Vol. 49, No. 5, pp. 751–761.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demina, L.L., Galkin, S.V. Geochemical features of heavy metal bioaccumulation in the Guaymas Basin of the Gulf of California. Oceanology 49, 697–706 (2009). https://doi.org/10.1134/S0001437009050117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437009050117

Keywords

Navigation